
1

An Application of Gamma-Poisson Model to Estimate

Turbojet Engine In-Flight Shutdown Rate

G. Eghbali and C. Munafo

Abstract

It is of interest to determine whether an air operator is experiencing an engine in-flight

shutdown event at an extraordinary high rate due to causes such as severe operating

conditions, poor maintenance programs, etc. This requires an estimate of the engine in-

flight shutdown rate of the air operator being considered and other air operators that use

similar engines. We use the maximum likelihood estimate (MLE), hierarchical Bayes

(HB), and a parametric empirical Bayes (PEB) approximation to estimate the engine in-

flight shutdown rate for each combination of air operator and engine group and compare

the results. We conclude that the HB and PEB approximation are preferred over the

MLE for estimating engine in-flight shutdown rate over time in that they provide nonzero

estimates with less variability compared with the MLE estimate, and the PEB

approximation is preferred over the HB since it can be more easily automated.

Keywords: Hierarchical Bayes, Parametric empirical Bayes, Engine in-flight shutdown

rate, Maximum likelihood estimate, Conjugate gamma distribution
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1. Introduction

Although engines are built very reliable, there is a chance they still might fail during the

flight. This engine failure event is referred to as an engine in-flight shutdown in the

aviation community. The engine in-flight shutdown event data can be used to determine

the engine’s in-flight shutdown rate from two different perspectives: from the overall

engine’s in-flight shutdown rate regardless of the air operator and in concert with the air

operator. The objective of the latter, which is the focus of this paper, is to determine

whether or not an air operator is experiencing engine in-flight shutdown events at an

extraordinary high rate due to causes such as severe operating conditions, poor

maintenance programs, etc. The true engine in-flight shutdown rate is the rate at which

the engine fails during the flight and is measured in terms of the number of engine

shutdowns per 1000 engine hours.

The engine in-flight shutdown event is assumed to be completely random since the

probability of having an engine in-flight shutdown in a small interval is considered

independent of the past and depends only on the length of the interval and the true engine

in-flight shutdown rate. Furthermore, the probabilities of engine in-flight shutdowns in

different time intervals are considered independent. The aforementioned assumptions are

developed based on the fact that an "engine" is indeed just the serial number. The

engine’s parts are continually replaced over time; some parts are removed at a certain

number of engine hours and some are replaced during overhaul or inspections if

necessary. We, therefore, assume that engines do not age; however, more efficient

engines built by newer technology can replace them over time.
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Thus, we can assume that the number of engine in-flight shutdowns, ijkX , during the

total engine hours, ijkt , follow a Poisson distribution with parameter ijkijk tλ , where i, j,

and k represent the coded air operator, engine group, and month, respectively. Where

ijkλ is then the true engine in-flight shutdown rate for the air operator i and engine group

j in month k. In this way, the problem of determining the engine in-flight shutdown rate

of air operators boils down obtaining estimates of a set of Poisson parameters, which can

be accomplished by using the maximum likelihood estimation method (MLE) or

simultaneous estimate methods, i.e., Bayesian estimation methods.

The MLE estimates of the true engine in-flight shutdown rate is simply the number of

shutdowns divided by the engine hours already divided by 1000. If all engines have

nearly the same or identical true engine in-flight shutdown rate regardless of operating air

operator and aircraft, one can then pool all engine shutdown data collected from air

operators and obtain the MLE estimate of the true engine shutdown rate. Or, if there is

enough evidence to accept that the engine in-flight shutdown rates are very different and

totally unrelated, one can then obtain the MLE estimate using individual engine

shutdown data. However, since the true engine in-flight shutdown rate is relatively a

small number, the MLE estimates would be zero in most cases; a nonzero MLE estimate

requires a large number of engine hours.

On the other hand, it is probably true that the engine in-flight shutdown data collected

from air operators have some commonalties. This commonality is expected because air

operators use the same or similar engines, and also, the fact that commercial engines
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share the same technology and, in most cases, are even manufactured by the same

company. In literature, the Bayesian estimation methods as described, for example, in

Maritz (1989) and Berger (1985), have been widely used to capture such commonality

and provide simultaneous estimates of the parameters at the individual level.

Martz, Parker, and Rasmuson (1999) used a parametric empirical Bayes (PEB)

approximation and a two-stage hierarchical Bayes (HB) formulation to estimate the

scram rate for nuclear power plants. The annual number of unplanned scrams was

assumed to follow a Poisson distribution. They assumed a conjugate gamma prior at the

first stage and an improper distribution at the second stage. They developed the MLE

estimates of scram rates as well as the HB and PEB estimates of posterior means and

standard deviations for each plant and compared them. They then used an exponentially

weighted moving average to smooth scram rate estimates over time in order to identify

trends.

Schluter, Deely, and Nicholson (1997) developed a gamma-Poisson HB model to identify

the most hazardous accident location. They considered informative and noninformative

hyperpriors and discussed how to determine the type of prior densities and their

parameters. The developed model is illustrated using fatality accidents data.

Martz, Kvam, and Abramson (1996) use a PEB approximation to estimate emergency

diesel generator (EDG) reliability at the individual level using industrywide data. They

assumed a binomial distribution model for the EDG reliability data and a beta prior
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distribution to develop the PEB estimates of the EDG’s reliabilities. They proposed

seven practical steps in applying the PEB methods.

Chen and Singpurwalla (1996) developed a two-stage HB model to obtain simultaneous

estimates of binomial parameters and applied it to determine the EDG reliability using

the Markov Chain Monte Carlo techniques under independence and exchangeability of

the parameters, separately. They assumed an L-shaped prior distribution at the first stage

and a beta distribution at the second. They then compared the results with those obtained

by the maximum likelihood and empirical Bayes (EB).

Gaver and O’Muircheartaigh (1987) developed simultaneous estimate of Poisson

parameters using the PEB method. They assumed two parametric prior distributions:

log-student t and gamma distribution. They then analyzed three data sets and concluded

that the individual estimates based on the student-t prior have a robust quality.

The first step in applying the Bayesian analysis to the engine in-flight shutdown data is to

show that ijkλ s are not the same for all i, j. The Chi-square test, as explained in Degroot

(1986, p. 542), can be used to test the equality of ijkλ s. However, since the number of

engine in-flight shutdown in each month, in most cases, is zero or less than five, we let k

represent a year and use annual data, as shown in Table 1, to apply the Chi-square test;

each row in Table 1 corresponds to an air operator and engine group. The Chi-square

statistic for the data in Table 1 is 1734.13 with 188 degrees of freedom and with a p-value

of zero; however, we cannot reject the equality of ijkλ s merely based on the result of this
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test since there are still plenty of engine in-flight shutdown data in Table 1 that is less

than five. To provide more evidence against the equality of ijkλ s, the Chi-square test is

applied to subsets of the data in Table 1.

The Chi-square statistic for those that have at least five engine in-flight shutdowns is

1074.52 with 42 degrees of freedom and a p-value of zero. Moreover, the Chi-square

statistic for major air operators (shown as in bold in Table 1) is 409.17 with 57 degrees of

freedom and a p-value of zero. We notice that none of the above subsets are randomly

chosen; however, zero p-values for all three tests strongly suggest that ijkλ s are not

identical for all i, j.

The exchangeability is another important issue that has to be investigated in a Bayesian

analysis; a distribution is exchangeable if the probability distribution does not depend on

the order of variables as described in Berger (1985). For a detail discussion on the

exchangeability issue refer to the Draper, et al. (1993). In the case of engine shutdown

events, we consider the distribution as exchangeable because one would attach the same

probabilities to the different sequences of ijkλ s.

Table 2 contains a turbojet’s engine in-flight shutdown data for January 1999, and also

contains the MLE, PEB, and HB Monte Carlo Markov Chain (MCMC) estimates that

will be discussed in detail next.

2. Hierarchical Bayes Estimation
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The HB or full Bayesian approach is based on the use of hierarchical priors, particularly

two-stage priors. The engine in-flight shutdown problem is conceptually identical to the

scram rate problem as described by Martz, et al. (1999). Thus, we similarly consider ijkλ

as a sample from the conjugate gamma distribution described as

),(),( βαλβαλπ ijkijk g=

where gamma distribution is defined as )(/)exp(),( 1 αβββα αα Γ−= − xxxg ,

0,0 >> βα . Therefore, the joint prior distribution for the data shown in Table 2 will

then be as
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where kx is a vector including all ijkx s. Note that the Bayes estimate of ijkλ will be the

mean of the posterior distribution, ijkijk Tx ++ βα ˆˆ , where α̂ and β̂ are estimates of α

and β , respectively.

At the second stage, the joint density function of prior parameters, ),( βαh , can be

written as

)()(),( 12 ααββα hhh =

We assume that )(1 αh follows an exponential distribution with a mean of 0.5 and

)(2 αβh follows a gamma distribution with a mean of 1 and standard deviation of 4, i.e.,

)0625.0,0625.0;()(2 βαβ gh = . We obtain HB estimates using Gibbs sampling as

implemented in the Bayesian inference using Gibbs sampling software (BUGS), which is

available at www.mrc-bsu.cam.ac.uk/bugs. Appendix A presents the BUGS language for

the engine in-flight shutdown problem. The parameters of the posterior distribution for

k=1 (or January 1999) are determined to be 25.12ˆ,02468.0)ˆ(,3927.0ˆ 111 === βαα Var

and 140.41)ˆ( 1 =βVar after 10000 simulation iterations including 2000 burn-in iterations.

3. Parametric Empirical Bayes Estimate

The EB methods come to play when there is a known relationship among parameters,

which allow determining the prior distribution using the data. The PEB models are those
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in which the known relationship is a parametric distribution. For the engine in-flight

shutdown data, we have assumed that ijkλ s follow a gamma distribution. Therefore,

similar to Martz, et al. (1999), we use the marginal gamma-Poisson likelihood as

∏∏
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to estimate kα and kβ , which are the parameters of the prior distribution, i.e., gamma

distribution. We use the Newton-Raphson and Fisher information matrix to obtain kα̂ ,

kβ̂ and the variance-covariance matrix, respectively. The parameters of the prior are

determined to be ,22.12ˆ0.0.02591,)ˆ(,3916.0ˆ 111 === βαα Var and 49.43)ˆ( 1 =βVar .

These estimates agree with those obtained using the HB approach. The MLE, PEB, and

HB MCMC estimates of the engine in-flight shutdown rate obtained using data in Table 2

are plotted in Figure 1. The Bayes estimates, however, contain less variability compared

with the MLE estimates. Furthermore, most of the MLE estimates are zero whereas the

Bayes estimates are always nonzero. It is important to note that the true engine in-flight

shutdown rate is greater than zero, and zero estimates, as obtained by the MLE method,

are noninformative and useless.

The advantage of the PEB method over the HB is that the PEB method can be automated

and used in developing a monitoring software for identifying air operators that are

experiencing engine in-flight shutdown events at an extraordinary high rate. The
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exponentially smoothed PEB estimates of engine in-flight shutdown rate for air operator

1 (data item 1) and air operators as a group with a smoothing factor of 0.3 in 1999 are

plotted in Figure 2. From this plot, air operator 1’s performance regarding the engine in-

flight shutdown events is quite well compared with the turbojet’s group engine in-flight

shutdown rate. Similar figures can be easily developed for the other air operators in

Table 2.

4. Conclusion

We have obtained and compared the MLE, HB, and PEB estimates of the turbojet engine

in-flight shutdown rate in January 1999. It is concluded that the Bayesian estimates are

preferred over the MLE method in estimating the engine in-flight shutdown rate for

monitoring purposes because they provide nonzero estimates and contain less variability.

The exponentially smoothed Bayes estimates over time are also useful in identifying air

operators with an extraordinary high engine in-flight shutdown rate.
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Appendix A

model
{

for (i in 1 : N) {
theta[i] ~ dgamma(alpha, beta)
lambda[i] <- theta[i] * t[i]
x[i] ~ dpois(lambda[i])

}
alpha ~ dexp(2)
beta ~ dgamma(0.0625, 0.0625)

}
list(t=c(95.226,187.827,57.350,1.232,14.164,11.554,16.722,13.586,3.360,1.392,22.740,2
6.550,6.862,26.378,9.324,9.512,14.488,8.950,0.620,3.795,0.090,1.545,32.838,89.808,57.
396,2.004,22.686,7.328,0,5.456,2.817,1.482,1.108,29.116,60.464,26.736,18.417,30.978,1
3.188,167.011,24.360,8.830,4.092,5.850,0.304,0.108,7.388,5.706,3.822,46.726,3.490,26.
169,2.530,1.064,0.448,1.440,4.408,5.691,9.752,7.010,8.022,3.560,5.308,4.772,3.594,0,8.
758,3.084,0.915,0.504,1.186,27.600,14.468,17.529,33.210,84.599,51.005,10.662,2.390,3.
644,0.492,6.548,0.012,2.794,4.176,0.394,0.786,1.362,1.638,0.714,3.082,11.226,1.964,1.6
53,1.401,2.346,10.110,6.094,0.348,0.528,139.432,19.520,4.382,1.440,0.153,5.094,10.002
,3.258,68.699,8.666,0.364,8.888,54.968,2.130,51.628,18.054,14.430,14.721,79.382,53.12
1,22.734,11.650,12.266,32.052,30.620,1.440,0.372,6.828,1.392,1.206,5.301,1.188,0.132,
1.254,0.998,0.308,19.890),
x=c(2,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,2,1,5,0,0,5,0,0,0,0,0,0,0,0,0,0,0,6,1,0,1,2,0,
0,0,0,1,0,0,1,0,0,0,0,3,1,1,0,0,0,0,1,0,0,1,1,0,0,0,0,1,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,2,0,0,4,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),N=13
7)
list(alpha=0.1, beta=1)

References

[1] Berger O James. Statistical Decision Theorey and Bayesian Analysis. New York:
Spring-Verlag, 1985.

[2] Chen J, Singpurwalla N D. The Notion of “Composite Reliability” and Its
Hierarchical Bayes Estimation. Journal of the American Statistical Association 1996
;91( 436), p.1474-1484.

[3] Degroot M H. Probability and Statistics. Addison-Wesley, Second edition, 1986.
[4] Draper D, Hodges J S, Mallows C L, Pregibon D. Exchangeability and Data Analysis.

J. R. Statist. Soc. A 1993 156, Part 1, p. 9-37.
[5] Gaver D P, O’Muircheartaigh I O. Robust Empirical Bayes Analyses of Event Rates.

Technometrics, Feb. 1987; 29(1).
[6] Maritz J S, Lwin T. Empirical Bayes Methods. London: Chapman & Hall, 1989.
[7] Martz H F, Parker R L, Rasmuson D M. Estimation of Trends in the Scram Rate at

Nuclear Power Plants. Technometrics, Nov. 1999; 41( 4).
[8] Martz H F, Kvam P H, Abramson L R. Empirical Bayes Estimation of the Reliability

of Nuclear-Power-Plant Emergency Diesel Generators. Technometrics, Feb. 1996;
38(1).



12

[9] Schluter P J, Deely J J, Nicholson A J. Ranking and selecting motor vehicle accident
sites by using a hierarchical Bayesian model. The statistician 1997 46(3) p. 293-316.



13

Figure 1- Estimates of the 01/1999 engine in-flight shutdown rate per 1000 engine hours
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Figure 2- Exponentially Smoothed PEB estimates for Air Operator 1 (Data Item 1) in 1999
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Table 1- The turbojet engine’s in-flight shutdown data for 1999
Hrs SD Hrs SD Hrs SD Hrs SD

653945 50 124671 4 16548 1 14748 0
1909419 49 121572 4 13317 1 13236 0
1995791 27 12466 4 12747 1 13172 0
318078 25 675280 3 11922 1 12740 0
273616 24 425200 3 9036 1 12012 0
464514 23 319374 3 7995 1 11868 0
931480 22 214166 3 7798 1 11274 0
635980 21 208864 3 5073 1 9760 0

1056734 19 207626 3 4216 1 9530 0
53988 17 197886 3 2823 1 9069 0

153332 16 183898 3 2202 1 8739 0
120488 15 124884 3 287216 0 7581 0
140160 14 106140 3 242370 0 6927 0

1654956 12 100486 3 232574 0 6734 0
673620 12 75234 3 140304 0 6652 0
133820 12 62349 3 137026 0 6540 0
719934 11 43968 3 121582 0 6111 0
225674 11 37116 3 98804 0 5172 0
174964 11 721280 2 97234 0 4932 0
22456 11 457764 2 96750 0 4762 0

997566 10 203452 2 91714 0 4664 0
391384 10 193280 2 88434 0 4590 0
74472 10 75378 2 83324 0 4524 0

651447 9 61800 2 77648 0 4378 0
366310 9 56982 2 71662 0 4280 0
26766 9 53356 2 47344 0 3708 0
50516 8 51021 2 44604 0 3632 0

1055250 7 15784 2 41550 0 3446 0
657498 7 11724 2 40272 0 3304 0
209578 7 11616 2 37884 0 2922 0
179950 7 5004 2 35716 0 2832 0
52656 7 395470 1 33178 0 2788 0
52176 7 341048 1 32766 0 2152 0

201225 6 226056 1 29276 0 2064 0
141204 6 218379 1 27064 0 2024 0
99317 6 138792 1 26259 0 1992 0

958024 5 124058 1 25634 0 1326 0
697844 5 113668 1 24606 0 1202 0
76836 5 105639 1 22396 0 1034 0
70544 5 100614 1 21054 0 760 0
68886 5 77640 1 20660 0 736 0
49688 5 36840 1 20442 0 692 0
4632 5 31826 1 18681 0 348 0

345104 4 27444 1 18458 0 262 0
293871 4 20313 1 16965 0 34 0
245534 4 19566 1 16902 0
178464 4 17636 1 16616 0
135488 4 17248 1 14760 0

Hrs: Hours, SD: Shutdown
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Table 2- MLE and Bayes estimates of turbojet engine’s in-flight shutdown rate for
01/1999

PEB MCMC HBData Item Hours Shutdowns MLE
Mean Std Dev Mean Std Dev

1 95226 2 0.021003 0.02226 0.01439 0.02249 0.01440
2 187827 1 0.005324 0.00696 0.00590 0.00698 0.00594
3 57350 0 0 0.00563 0.00899 0.00563 0.00931
4 1232 0 0 0.02911 0.04653 0.03022 0.05381
5 14164 1 0.070602 0.05275 0.04472 0.05519 0.04831
6 11554 0 0 0.01647 0.02632 0.01587 0.02630
7 16722 0 0 0.01353 0.02162 0.01342 0.02229
8 13586 0 0 0.01517 0.02425 0.01509 0.02418
9 3360 0 0 0.02514 0.04017 0.02573 0.04532
10 1392 0 0 0.02877 0.04598 0.03020 0.05260
11 22740 0 0 0.01120 0.01790 0.01081 0.01784
12 26550 0 0 0.01010 0.01614 0.00957 0.01565
13 6862 1 0.14573 0.07294 0.06183 0.07797 0.07269
14 26378 0 0 0.01015 0.01621 0.00981 0.01630
15 9324 0 0 0.01818 0.02905 0.01817 0.03023
16 9512 0 0 0.01802 0.02880 0.01832 0.02993
17 14488 0 0 0.01466 0.02343 0.01417 0.02282
18 8950 0 0 0.01850 0.02956 0.01862 0.03148
19 620 0 0 0.03050 0.04874 0.03284 0.05740
20 3795 1 0.263505 0.08691 0.07367 0.09299 0.08392
21 90 0 0 0.03182 0.05084 0.03401 0.05971
22 1545 0 0 0.02845 0.04547 0.03042 0.05337
23 32838 2 0.060905 0.05308 0.03432 0.05355 0.03504
24 89808 1 0.011135 0.01364 0.01156 0.01335 0.01151
25 57396 5 0.087114 0.07745 0.03336 0.07823 0.03414
26 2004 0 0 0.02753 0.04400 0.02827 0.04996
27 22686 0 0 0.01122 0.01793 0.01147 0.01880
28 7328 5 0.682314 0.27585 0.11880 0.29810 0.15510
29 0 0 N/A 0.03205 0.05122 0.03489 0.06258
30 5456 0 0 0.02216 0.03541 0.02154 0.03554
31 2817 0 0 0.02604 0.04162 0.02687 0.04635
32 1482 0 0 0.02858 0.04568 0.02927 0.05089
33 1108 0 0 0.02938 0.04696 0.03046 0.05254
34 29116 0 0 0.00947 0.01514 0.00926 0.01490
35 60464 0 0 0.00539 0.00861 0.00548 0.00872
36 26736 0 0 0.01005 0.01606 0.00965 0.01603
37 18417 0 0 0.01278 0.02043 0.01247 0.02049
38 30978 0 0 0.00906 0.01449 0.00906 0.01530
39 13188 0 0 0.01541 0.02463 0.01461 0.02342
40 167011 6 0.035926 0.03566 0.01411 0.03587 0.01418
41 24360 1 0.041051 0.03804 0.03225 0.03887 0.03389
42 8830 0 0 0.01860 0.02973 0.01766 0.02898
43 4092 1 0.244379 0.08532 0.07233 0.09378 0.08661
44 5850 2 0.34188 0.13237 0.08559 0.14370 0.10150
45 304 0 0 0.03127 0.04997 0.03445 0.06185
46 108 0 0 0.03177 0.05077 0.03397 0.06224
47 7388 0 0 0.01997 0.03192 0.01974 0.03333
48 5706 0 0 0.02185 0.03491 0.02202 0.03624
49 3822 1 0.261643 0.08676 0.07355 0.09473 0.08905
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Table 2 (Continue)- MLE and Bayes estimates of turbojet engine’s in-flight shutdown
rate for 01/1999

PEB MCMC HBData Item Hours Shutdowns MLE
Mean Std Dev Mean Std Dev

50 46726 0 0 0.00664 0.01062 0.00666 0.01091
51 3490 0 0 0.02493 0.03984 0.02556 0.04388
52 26169 1 0.038213 0.03625 0.03073 0.03641 0.03148
53 2530 0 0 0.02655 0.04243 0.02749 0.04711
54 1064 0 0 0.02948 0.04712 0.03069 0.05365
55 448 0 0 0.03092 0.04941 0.03433 0.05970
56 1440 0 0 0.02867 0.04582 0.03009 0.05345
57 4408 3 0.680581 0.20400 0.11077 0.22580 0.14400
58 5691 1 0.175716 0.07770 0.06587 0.08393 0.07578
59 9752 1 0.102543 0.06334 0.05370 0.06735 0.06059
60 7010 0 0 0.02036 0.03254 0.01977 0.03307
61 8022 0 0 0.01935 0.03092 0.01897 0.03144
62 3560 0 0 0.02482 0.03966 0.02487 0.04313
63 5308 0 0 0.02234 0.03571 0.02255 0.03829
64 4772 1 0.209556 0.08191 0.06943 0.08807 0.08056
65 3594 0 0 0.02476 0.03958 0.02566 0.04325
66 0 0 N/A 0.03205 0.05122 0.03404 0.06255
67 8758 1 0.114181 0.06634 0.05624 0.07082 0.06275
68 3084 1 0.324254 0.09094 0.07709 0.10270 0.09650
69 915 0 0 0.02982 0.04765 0.03111 0.05707
70 504 0 0 0.03078 0.04919 0.03333 0.05866
71 1186 0 0 0.02921 0.04669 0.03033 0.05297
72 27600 0 0 0.00983 0.01572 0.00948 0.01547
73 14468 1 0.069118 0.05215 0.04421 0.05298 0.04501
74 17529 0 0 0.01316 0.02104 0.01283 0.02067
75 33210 0 0 0.00862 0.01377 0.00840 0.01352
76 84599 2 0.023641 0.02470 0.01597 0.02437 0.01591
77 51005 2 0.039212 0.03783 0.02446 0.03818 0.02506
78 10662 0 0 0.01711 0.02735 0.01671 0.02754
79 2390 0 0 0.02681 0.04284 0.02721 0.04672
80 3644 0 0 0.02469 0.03945 0.02447 0.04178
81 492 0 0 0.03081 0.04924 0.03281 0.05961
82 6548 0 0 0.02087 0.03335 0.02043 0.03309
83 12 0 0 0.03202 0.05117 0.03393 0.06105
84 2794 0 0 0.02608 0.04169 0.02679 0.04773
85 4176 0 0 0.02389 0.03817 0.02449 0.04047
86 394 0 0 0.03105 0.04962 0.03371 0.06219
87 786 0 0 0.03011 0.04812 0.03167 0.05650
88 1362 0 0 0.02884 0.04608 0.03062 0.05298
89 1638 0 0 0.02826 0.04516 0.02988 0.05218
90 714 0 0 0.03028 0.04839 0.03196 0.05613
91 3082 0 0 0.02559 0.04090 0.02638 0.04408
92 11226 0 0 0.01670 0.02669 0.01606 0.02660
93 1964 0 0 0.02761 0.04412 0.02884 0.05123
94 1653 0 0 0.02823 0.04511 0.02977 0.05313
95 1401 0 0 0.02875 0.04595 0.02980 0.05151
96 2346 0 0 0.02689 0.04297 0.02755 0.04623
97 10110 0 0 0.01754 0.02803 0.01813 0.03070
98 6094 2 0.328192 0.13061 0.08445 0.13960 0.09889
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Table 2 (Continue)- MLE and Bayes estimates of turbojet engine’s in-flight shutdown
rate for 01/1999

PEB MCMC HBData Item Hours Shutdowns MLE
Mean Std Dev Mean Std Dev

99 348 0 0 0.03116 0.04980 0.03238 0.05902
100 528 0 0 0.03072 0.04910 0.03337 0.06035
101 139432 4 0.028688 0.02896 0.01382 0.02888 0.01376
102 19520 0 0 0.01234 0.01972 0.01203 0.02009
103 4382 0 0 0.02359 0.03770 0.02409 0.04183
104 1440 0 0 0.02867 0.04582 0.03004 0.05410
105 153 0 0 0.03165 0.05058 0.03356 0.06054
106 5094 0 0 0.02262 0.03615 0.02269 0.03854
107 10002 0 0 0.01762 0.02816 0.01701 0.02862
108 3258 0 0 0.02530 0.04044 0.02541 0.04411
109 68699 1 0.014556 0.01720 0.01458 0.01731 0.01471
110 8666 0 0 0.01875 0.02996 0.01823 0.03045
111 364 0 0 0.03112 0.04974 0.03293 0.06172
112 8888 1 0.112511 0.06593 0.05589 0.06850 0.06178
113 54968 0 0 0.00583 0.00931 0.00586 0.00946
114 2130 0 0 0.02729 0.04361 0.02763 0.04734
115 51628 0 0 0.00613 0.00980 0.00607 0.00984
116 18054 0 0 0.01294 0.02067 0.01248 0.02065
117 14430 0 0 0.01469 0.02348 0.01417 0.02342
118 14721 0 0 0.01454 0.02323 0.01392 0.02353
119 79382 0 0 0.00427 0.00683 0.00427 0.00704
120 53121 0 0 0.00599 0.00958 0.00595 0.00988
121 22734 0 0 0.01120 0.01790 0.01112 0.01813
122 11650 0 0 0.01641 0.02622 0.01639 0.02676
123 12266 0 0 0.01599 0.02556 0.01572 0.02591
124 32052 0 0 0.00884 0.01414 0.00864 0.01417
125 30620 0 0 0.00914 0.01461 0.00887 0.01454
126 1440 0 0 0.02867 0.04582 0.03025 0.05388
127 372 0 0 0.03110 0.04970 0.03391 0.06105
128 6828 0 0 0.02056 0.03286 0.02087 0.03516
129 1392 0 0 0.02877 0.04598 0.03042 0.05470
130 1206 0 0 0.02917 0.04662 0.02910 0.05070
131 5301 0 0 0.02235 0.03572 0.02289 0.03916
132 1188 0 0 0.02921 0.04668 0.03036 0.05095
133 132 0 0 0.03171 0.05067 0.03526 0.06296
134 1254 0 0 0.02907 0.04645 0.03023 0.05345
135 998 0 0 0.02963 0.04735 0.03169 0.05766
136 308 0 0 0.03126 0.04996 0.03392 0.06469
137 19890 0 0 0.01220 0.01949 0.01176 0.01889
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